
1 © 2011 IBM Corporation

Writing and Tuning Queries for Optimal
Performance

John Hornibrook, DB2 Query Optimization Development
IBM Canada



© 2011 IBM Corporation7

Avoid complex expressions in search conditions

• Avoid join predicates on expressions
• Limits the join method to nested loop

• No hash or merge sort join possible

• Prevents accurate selectivity estimates

WHERE SALES.PRICE * SALES.DISCOUNT = TRANS.FINAL_PRICE
WHERE UPPER(CUST.LASTNAME) = TRANS.NAME

• Consider using a generated column



© 2011 IBM Corporation8

Avoid complex expressions in search conditions

• Avoid expressions over columns in local predicates
• Prevents the use of index start and stop keys

• Results in inaccurate selectivity estimates

• Requires extra processing at query execution time

• Use the inverse of the expression

• Instead of this:

<expression>(C) = 'constant'
INTEGER(TRANS_DATE)/100 = 200802

• Do this:

C = <inverse-expression>('constant')
TRANS_DATE BETWEEN ‘2008-02-01’ AND ‘2008-02-29’



© 2011 IBM Corporation11

Avoid complex expressions in search conditions

• Watch out for views!
CREATE VIEW CUST_V AS
(SELECT LASTNAME, (CUST_ID * 100) + INT(CUST_CODE) AS CUST_KEY
FROM CUST)

SELECT LASTNAME FROM CUST_V WHERE CUST_KEY = 123456

• The query looks innocent, but view merging results in:

SELECT LASTNAME FROM CUST WHERE (CUST_ID * 100) +
INT(CUST_CODE) = 123456



© 2011 IBM Corporation13

Avoid complex expressions in search conditions

• Consider using generated columns when the inverse
function is difficult to express

• LASTNAME IN ('Woo', 'woo', 'WOO', 'WOo', and so on)

CREATE TABLE CUSTOMER
(LASTNAME VARCHAR(100),
U_LASTNAME VARCHAR(100) GENERATED ALWAYS AS (UCASE(LASTNAME)))

CREATE INDEX CUST_U_LASTNAME ON CUSTOMER(U_LASTNAME)

SELECT CUST_ID FROM CUSTOMER WHERE U_LASTNAME = UCASE(‘Woo’)

• Consider using case-insensitive search in V9.5 FP1 for this particular example,
however, it applies to the entire data base.



© 2011 IBM Corporation19

Avoid multiple aggregations with the DISTINCT
keyword

• If multiple distinct aggregations can’t be avoided,
consider:
• DB2_EXTENDED_OPTIMIZATION =

ENHANCED_MULTIPLE_DISTINCT

• Input stream is read once and shared by each UNION arm

• Applies only to DPF environments

• DPF considerations:

• May improve performance where the ratio of processors to the number
of database partitions is low e.g. <= 1

• Otherwise multiple arms may benefit from parallelization
• Performance testing necessary before use in production



© 2011 IBM Corporation20

Use OPTIMIZE FOR N ROWS clause
with FETCH FIRST N ROWS ONLY clause

• OPTIMIZE FOR N ROWS
• Indicates to the optimizer that the application intends to only

retrieve N rows, but the query will return the complete result set

• Optimizer will favor ‘piped’ plans

• Avoids buffering operations such as temporary tables, sorts, hash
joins

• FETCH FIRST N ROWS ONLY
• Indicates that the query should only return N rows

• Optimizer doesn’t automatically assume OPTIMIZE
FOR N ROWS when FETCH FIRST N ROWS ONLY is
specified for the outer subselect

• Try specifying both



© 2011 IBM Corporation33

Optimization classes

• Use greedy join enumeration
• 0 - minimal optimization for OLTP

• use index scan/nested loop join
• basic set of query rewrite rules

• 1 - low optimization

• consider merge scan join and table scans
• subset of query rewrite rules

• 2 - full optimization, limit space/time

• use same query transforms & join strategies as class 5

• Use dynamic programming join enumeration
• 3 - moderate optimization

• rough approximation of DB2 for z/OS
• 5 - self-adjusting full optimization (default)

• uses all techniques with heuristics
• 7 - full optimization

• similar to 5, without heuristics
• 9 - maximal optimization

• spare no effort/expense
• considers all possible join orders, including Cartesian products!

• 0 - minimal optimization for OLTP

• use index scan/nested loop join
• basic set of query rewrite rules

• 1 - low optimization

• consider merge scan join and table scans
• subset of query rewrite rules

• 2 - full optimization, limit space/time

• use same query transforms & join strategies as class 5

• 3 - moderate optimization

• rough approximation of DB2 for z/OS
• 5 - self-adjusting full optimization (default)

• uses all techniques with heuristics
• 7 - full optimization

• similar to 5, without heuristics
• 9 - maximal optimization

• spare no effort/expense
• considers all possible join orders, including Cartesian products!



© 2011 IBM Corporation35

Reducing optimization time

• If reducing optimization class doesn’t reduce optimization
time sufficiently OR

• Lower optimization classes aren’t appropriate for workload

• Consider setting DB2_REDUCED_OPTIMIZATION
registry variable

• Provides more control over optimizer's search space than
optimization class



© 2011 IBM Corporation45

Manually updating statistics

• Statistics values are...

• readable in the system catalogs

• e.g., HIGH2KEY, LOW2KEY

• updateable, e.g.

UPDATE SYSSTAT.TABLES

SET CARD = 1000000 WHERE TABNAME = `NATION'

• Implications:

• Can simulate a non-existent database

• Can "clone" a production database (in a test environment)

• db2look tool

• However:

• Don’t ‘fake’ the statistics to fool the optimizer!

• May fix some queries, but others may degrade

• Follow best-practices for query tuning first



© 2011 IBM Corporation46

As a last resort…optimization profiles

• Mechanism to control statement optimization
• Can control both query rewrite optimization and access path

optimization

• Sets of explicit optimization guidelines
• “For app1.0, only consider routing to MQTs: Newt.AvgSales and

Newt.SumSales”

• “Use index ISUPPKEY to access SUPPLIERS in the subquery of
query 9”

• Can be put into effect without editing application code
• Compose optimization profile, add to DB, rebind targeted packages

• Should only be used after all other tuning options
exhausted
• RUNSTATS, indexes, optimization class, DB and DBM configs, etc.

• caution: results in circumvention of usual cost-based optimization

• Available in DB2 9


